Problem Set 5 solution manual

Exercise. A5.1

Lemma 1. Let i, j, k, and l be 4 distinct elements: then we have $(i j)(k l)=(i j k)(j k l)$
proof. $(i j)(k l)=(i j)(j k)(j k)(k l)=(i j k)(j k l)$
Now let $\sigma \in A_{n}$, then using the fact that S_{n} is generated by the transpositions we can write σ as a product of an even number of transpositions.

Then: $\sigma=\tau_{1} . \tau_{2} \ldots . \tau_{s}$ for some s even.
Then consider each to consecutive transpositions:
$\tau_{r} \tau_{m}=(i j)(k l)$:We have two cases:
$\begin{cases}i, j, k, l \text { are distinct } & \text { then } \tau_{r} \tau_{m}=(i j k)(k j l) \text { by above lemma. } \\ i=k(\text { or similarly } i=l \text { or } j=k \text { or } j=l & \text { then } \tau_{r} \tau_{m}=(i j)(k l)=(i j)(i l)=(j i l) . \\ i=k j=l(\text { or } i=l j=k) & \text { In this case they cancel each other } .\end{cases}$
Then we can join each to consecutive transpositions to get 3 cycles, then σ is the product of 3 -cycles.

Section. 10
Exercise. 36

To do this exercise we need to do exercise 29 in section 4 first :

Ex 4:

Let $S=\left\{x \in G \mid x \neq x^{-1}\right\}$.
Then the number of elements of S is even, since the elements of S can be paired (x, x^{-1}), so S splits into two parts with same number of elements, and hence number of elements of S is even.

Then $G-S$, contains an even number of elements, but $G-S$ contains e, so it must contain an element $a \neq e$. Now since $a \notin S$ then a must be equal to its inverse, and hence $a^{2}=a \cdot a=a \cdot a^{-1}=e$. So a is of order 2 . So G contains an element of order 2 .

Now back to our Ex:
We have $|G|=2 n$ for some n odd. Then by Ex 4 we know that G contains an element of order 2 , call it a. Suppose G contains another element b, with $b \neq a$, and $b \neq e$, such that b is of order 2 . It is then easy to verify that $H=\{e, a, b, a b\}$ is a subgroup of G.

We know that e, a, b are three distinct elements, now suppose $a b=a$ this implies that $b=e$ which is not true, similarly we can see that $a b \neq a$, and suppose $a b=e$, this implies that $b=a^{-1}$, which implies that $b=a$ which is not true. So we deduce that the elements of H are all distinct.

Finally by Lagrange we know that $|H|$ divides the order of G. This implies that 4 divides $2 n$ $\Longrightarrow 2$ divides n, contradiction.

Then we conclude that G contains a unique element a with $a^{2}=e$.

Exercise. 41

Let $a+\mathbb{Z}$ be a left coset of \mathbb{Z} in \mathbb{R}. Then we can write a as $a=n+l$ for some $n \in \mathbb{Z}$, and $0 \leq l<1$, then since we know that $a+\mathbb{Z}=\{a+k \mid k \in \mathbb{Z}\}, a-n \in a+\mathbb{Z}$, then $l \in a+\mathbb{Z}$, so $a+\mathbb{Z}$ contains an element l , with $0 \leq l<1$.

Now suppose that we have $0 \leq l_{1}, l_{2}<1$ with $l_{1}, l_{2} \in a+\mathbb{Z}$, then $l_{1}-l_{2} \in \mathbb{Z}$, so $l_{1}-l_{2}=n$ for some $n \in \mathbb{Z}$, but since both l_{1}, and l_{2} are between 0 and 1 , then n can only be zero, which implies that $l_{1}=l_{2}$.
Exercise. 42
Consider a left coset $a+\langle 2 \pi\rangle$ of $\langle 2 \pi>$ in \mathbb{R}. The element in this cosets are all of the form $a+2 k \pi$, then for any $r \in a+<2 \pi>\sin (r)=\sin (a+2 k \pi)$ for some k, so it is equal to $\sin (a)$. Then the sine function have the same value on all the elements of the cose $\mathrm{t} a+\langle 2 \pi\rangle$.
Exercise. 45
Let $G=\langle a\rangle$ of order n . Let q be a divisor of n , and $d=\frac{n}{q}$. Now n is the smallest non zero positive integer such that $a^{n}=e$. Then $q d$ is the smallest non zero positive integer such that $a^{q d}=e$, so q is the smallest non zero positive integer such that $\left(a^{d}\right)^{q}=e$. Hence a^{d} is an element of order q in G, which means that $\left\langle a^{d}\right\rangle$ is a subgroup of order q in G.

Now let H be a subgroup of order q of G, H is cyclic, it is generated by an element x of $G . x$ has the form a^{i}, then order of $a^{i}=q$, then $i q=k . n$, for some $k \in \mathbb{Z}, \Longrightarrow i=\frac{k . n}{q} \Longrightarrow i=k . d$, then $a^{i}=a^{k . d}=\left(a^{d}\right)^{k}$ but this implies that $a^{i} \in\left\langle a^{d}\right\rangle$, then $\left\langle a^{i}\right\rangle \subset\left\langle a^{d}\right\rangle$, but since they have the same cardinal, then they are equal, $\Longrightarrow H=\left\langle a^{d}\right\rangle$.
Exercise. 46
Consider the group \mathbb{Z}_{n}, we know that for each d such that d divides n we have a unique subgroup of order d in \mathbb{Z}_{n}.

Now since each subgroup of \mathbb{Z}_{n} is by itself a cyclic group of order d, then we that the number of generators of this subgroup is $\phi(d)$.

Hence since every element of \mathbb{Z}_{n} generats some subgroup of order d dividing n, we can deduce that $\sum_{d \backslash n} \phi(d)$ counts each element of \mathbb{Z}_{n} once, and Hence $n=\sum_{d \backslash n}^{\sum} \phi(d)$.

Section. 20

Exercise. 3

The generators of the multiplicative group \mathbb{Z}_{17} are: $3,5,6,7,10,11,12,14$.
To find them you need to find first a generator, say you found 3 , then since it is a cyclic group you know that all the generators are only 3^{n}, where n is coprime with 16 the order of the multiplicative group \mathbb{Z}_{17}

Exercise. 4

Notice that $3^{47}=\left(3^{22}\right)^{2} .3^{3}$, and we know that $3^{22}=3^{23-1} \equiv 1 \bmod (23)$ by Fermat's little theorem, then $3^{47} \equiv 3^{3} \equiv 27 \equiv 4 \bmod (23)$.

Exercise. 8

We need to find $\phi\left(p^{2}\right)$ where p is prime. Look at all the integers $n<p^{2}$, suppose that $\operatorname{gcd}\left(n, p^{2}\right) \neq$ 1 , then there exist a common divisor of n and p^{2}, but any divisor of p^{2} (and less that p^{2}) is a divisor of p which can only be p or 1 , so we can deduce that p must be a divisor of n, (i.e. n is a multiple of p). Hence the integers $\in\left\{1,2,3 \ldots, p^{2}-1\right\}$ which are not coprime with p^{2}, are the divisors of p from $1, \ldots, p^{2}-1$.

Now the divisors of p are $p, 2 p, 3 p, \ldots,(p-1) p$ there number is $p-1$.
Finally we conclude that $\phi\left(p^{2}\right)=p^{2}-1-(p-1)=p^{2}-p$.

Exercise. 9

We know that the multiples of p, and q (i.e $\{p, 2 p, \ldots,(q-1) p, q, 2 q, \ldots,(p-1) q\}$, there number is $(p-1)+(q-1))$ are not coprime with $p q$.

Now let us prove that they are the only ones. Let n be such that $\operatorname{gcd}(n, p q) \neq 1$, then there exist a common divisor of n, and $p q$ call it m, since m divides $p q$ then m must divide p or q, suppose it divides p, them m must be equal to p (since p prime), and hence p divides n, which implies that n is a multiple of p.

Then we deduce that the only elements coprime with $p q$ are the ones which are not a multiple of p or of q, and those multiples form 2 disjoint sets of $\{1,2, \ldots, p q-1\}$.

Hence $\phi(p q)=p q-1-(p-1)-(q-1)=p q-p-q+1$.
Exercise. 10

First notice that $7^{1000}=\left(7^{8}\right)^{125}$, and we know that $7^{8} \equiv 1 \bmod (24)$ (using Euler's theorem with $n=24, \phi(24)=8)$.

Then $7^{1000} \equiv 1 \bmod (24)$.
Section. 11
Exercise. 1

The elements of the group	The order of each element
$(0,0)$	1
$(1,0)$	2
$(0,1)$	4
$(1,1)$	4
$(1,2)$	2
$(1,3)$	4
$(0,2)$	2
$(0,3)$	4

So this group is not cyclic since it doesn't contain any element of order 8 .
Exercise. 2

The elements of the group	The order of each element
$(0,0)$	1
$(1,0)$	3
$(2,0)$	3
$(0,1)$	4
$(0,2)$	2
$(0,3)$	4
$(1,1)$	12
$(1,2)$	6
$(1,3)$	12
$(2,1)$	12
$(2,2)$	6
$(2,3)$	12

So this group is cyclic, and it can be generated by $(1,1),(1,3),(2,1)$, and $(2,3)$.
Exercise. 4
We need to find the order of $(2,3)$ in $\mathbb{Z}_{6} \times \mathbb{Z}_{15}$, we know that the order of 2 in \mathbb{Z}_{6} is 3 , and the order of 3 in \mathbb{Z}_{15} is 5 , then order of $(2,3)$ is $\operatorname{lcm}(3,5)=15$.

Exercise. 5
Similarly we can find the order of $(8,10)$ in $\mathbb{Z}_{12} \times \mathbb{Z}_{18}$. First order of 8 in $\mathbb{Z}_{12}=\frac{12}{\operatorname{gcd}(12,8)}=\frac{12}{4}=3$, and order of 10 in $\mathbb{Z}_{12}=\frac{18}{\operatorname{gcd}(18,10)}=9$, then order of $(8,10)$ is 9 .
Exercise. 8
The greatest order in $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ is the order of (1,1), i.e it is the lcm (n, m). So for $\mathbb{Z}_{6} \times \mathbb{Z}_{8}$, the greatest order is 24 .
And for $\mathbb{Z}_{12} \times \mathbb{Z}_{15}$, the greatest order is 60 .

