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Problem Set 5 solution manual
Exercise. A5.1

Lemma 1. Let 4,7, k, and [ be 4 distinct elements: then we have (ij)(kl) = (ijk)(jkl)

proof. (ij)(kl) = (ij)(jk)(5k)(kl) = (ijk)(jkl)
Now let o € A,, , then using the fact that 5, is generated by the transpositions we can write o
as a product of an even number of transpositions.
Then: ¢ = 11.73....75 for some s even.
Then consider each to consecutive transpositions:
TrTm = (i7)(kl):We have two cases:
i,J,k,l are distinct then 7,7y, = (ijk)(kjl) by above lemma.
i =k(or stmilarly i =1 or j=k or j=1 then 1.7, = (ij)(kl) = (iy)(il) = (jil).
i=k j=llori=1j=k) In this case they cancel each other.

Then we can join each to consecutive transpositions to get 3 cycles, then o is the product of
3-cycles.

Section. 10

Exercise. 36

To do this exercise we need to do exercise 29 in section 4 first :
Ex 4:

Let S={r € G|z #x1}.

Then the number of elements of S is even, since the elements of S can be paired (z,27!), so S
splits into two parts with same number of elements, and hence number of elements of S is even.

Then G — S, contains an even number of elements, but G — S contains e, so it must contain an
element a # e. Now since a ¢ S then a must be equal to its inverse, and hence a? = a.a = a.a™! =e.
So a is of order 2. So G contains an element of order 2.

Now back to our Ex:

We have |G| = 2n for some n odd. Then by Ex 4 we know that G contains an element of order
2, call it a. Suppose G contains another element b, with b # a, and b # e, such that b is of order 2.
It is then easy to verify that H = {e, a, b, ab} is a subgroup of G.

We know that e, a,b are three distinct elements, now suppose ab = a this implies that b = e
which is not true, similarly we can see that ab # a, and suppose ab = e, this implies that b = a1,
which implies that b = a which is not true. So we deduce that the elements of H are all distinct.

Finally by Lagrange we know that |H| divides the order of G. This implies that 4 divides 2n

= 2 divides n, contradiction.

Then we conclude that G contains a unique element a with a? = e.



Exercise. 41

Let a + Z be a left coset of Z in R. Then we can write a as a = n + [ for some n € Z, and
0 <1 < 1, then since we know that a+Z ={a+k |k €Z},a—n € a+7Z , thenl € a+ Z, so
a + Z contains an element 1, with 0 <[ < 1.

Now suppose that we have 0 < ly,ls < 1 with l1,ls € a+Z, then [y — s € Z, so l; — ls = n for
some n € Z, but since both [;, and I3 are between 0 and 1, then n can only be zero , which implies
that ll = lg.

Exercise. 42

Consider a left coset a+ < 27 > of < 27 > in R. The element in this cosets are all of the form
a + 2km, then for any r € a+ < 27 > sin(r)=sin(a + 2kn) for some k , so it is equal to sin(a).
Then the sine function have the same value on all the elements of the cose t a+ < 27 >.

Exercise. 45

Let G =< a > of order n. Let g be a divisor of n, and d = 2. Now n is the smallest non
zero positive integer such that a™ = e. Then q¢d is the smallest non zero positive integer such that
a? = e, so q is the smallest non zero positive integer such that (ad)q = e. Hence a? is an element
of order ¢ in G, which means that < a? > is a subgroup of order ¢ in G.

Now let H be a subgroup of order ¢ of G, H is cyclic, it is generated by an element z of G. x
has the form a’, then order of a’ = ¢, then iq = k.n, for some k € Z, = i =52 — | =kd,
then o = a*4 = (ad)k but this implies that a’ €< a? >, then < a* >C< a >, but since they have
the same cardinal, then they are equal, = H =< a? >.

Exercise. 46

Consider the group Z,, we know that for each d such that d divides n we have a unique subgroup
of order d in Z,,.
Now since each subgroup of Z, is by itself a cyclic group of order d, then we that the number
of generators of this subgroup is ¢(d).
Hence since every element of Z,, generats some subgroup of order d dividing n , we can deduce
that d%] ¢(d) counts each element of Z,, once, and Hence n = d%) o(d).
n n

Section. 20
Exercise. 3
The generators of the multiplicative group Zi7 are: 3, 5, 6, 7, 10, 11, 12, 14.
To find them you need to find first a generator, say you found 3, then since it is a cyclic

group you know that all the generators are only 3", where n is coprime with 16 the order of the
multiplicative group Zi7

Exercise. 4

Notice that 317 = (322)2.33, and we know that 3?2 = 32371 = 1 mod(23) by Fermat’s little
theorem, then 3%7 = 3% = 27 = 4 mod (23).



Exercise. 8

We need to find ¢(p?) where p is prime. Look at all the integers n < p?, suppose that ged(n, p?) #
1, then there exist a common divisor of n and p?, but any divisor of p?(and less that p?) is a divisor
of p which can only be p or 1, so we can deduce that p must be a divisor of n, (i.e. n is a multiple
of p). Hence the integers € {1,2,3...,p?> — 1} which are not coprime with p?, are the divisors of p
from 1,...,p%> — 1.

Now the divisors of p are p,2p, 3p, ..., (p — 1)p there number is p — 1.

Finally we conclude that (b(p2) =p?—1- (p—1)= p* —p.

Exercise. 9

We know that the multiples of p,and ¢ (i.e {p,2p,...,(¢ — 1)p,q,2q, ..., (p — 1)q}, there number
is (p—1)+ (¢ — 1)) are not coprime with pg.

Now let us prove that they are the only ones. Let n be such that ged(n, pg) # 1, then there exist
a common divisor of n, and pq call it m, since m divides pg then m must divide p or g, suppose it
divides p, them m must be equal to p (since p prime), and hence p divides n, which implies that n
is a multiple of p.

Then we deduce that the only elements coprime with pq are the ones which are not a multiple
of p or of ¢, and those multiples form 2 disjoint sets of {1,2,...,pq — 1}.

Hence ¢(pg) =pg—1—(p—1)—(¢—1)=pg—p—q+1.

Exercise. 10

First notice that 7190 = (78)!25 and we know that 7% = 1 mod(24) (using Euler’s theorem with
n =24 ,$(24) = 8).
Then 7% = 1 mod(24).

Section. 11

Exercise. 1

The elements of the group | The order of each element

S b N D g g BN b
DO [ DO x| x| DN =

(0,3) 4
So this group is not cyclic since it doesn’t contain any element of order 8.

Exercise. 2



The elements of the group | The order of each element
(0,0) 1
(1,0) 3
(2,0) 3
(0,1) 4
(0,2) 2
(0,3) 4
(1,1) 12
(1,2) 6
(1,3) 12
(2,1) 12
(2,2) 6
(2,3) 12

So this group is cyclic, and it can be generated by (1,1), (1,3), (2,1), and (2,3).
Exercise. 4

We need to find the order of (2,3) in Zg X Z15, we know that the order of 2 in Zg is 3, and the
order of 3 in Z;5 is 5, then order of (2,3) is lem(3,5) = 15.

Exercise. 5

Similarly we can find the order of (8,10) in Z19 X Z1s. First order of 8 in Z19 = ﬁés) = 172 =3,

and order of 10 in Z;9 = ngw) =9, then order of (8,10) is 9.

Exercise. 8

The greatest order in Z,, X Zy, is the order of (1,1), i.e it is the lem(n,m).
So for Zg x Zg, the greatest order is 24.
And for Z15 X Z15, the greatest order is 60.



